Bacteria

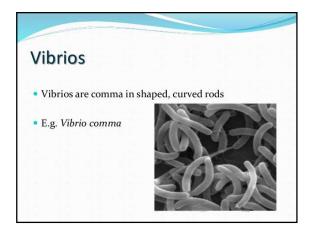
By :D.R.Awad, Department of Botany, R. S. M. Latur

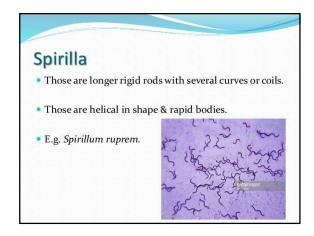
Introduction

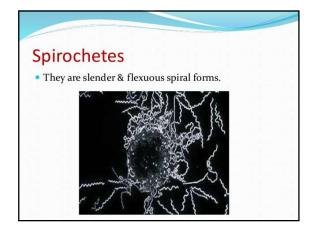
- Bacteria defined as microscopic single celled organism that can penetrate into healthy tissues & start multiplying into vast numbers.
- These are unicellular, free living small microorganism which are visible under the light microscope.
- Those are belongs to kingdom prokaryotae (Monera).
- They occur in water, soil, air & all natural environments.

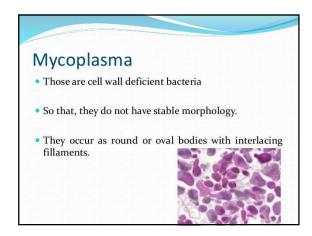
- The size & shape vary between the dimensions of 0.75 to 4.0 µm.
- The cocci diameter near about 1 μm & bacilli are 1 to 8 μm.
- They are found in spherical shape i.e coccoid forms or as cylindrical form i.e rod shaped forms.

Shape of Bacteria

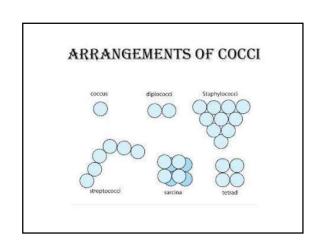

- On basis of shape, bacteria are classified as follows...
- Cocci
- 2. Bacilli
- 3. Vibrios
- 4. Spirilla
- 5. Spirochetes
- 6. Actinomycetes
- 7. Mycoplasams


Cocci

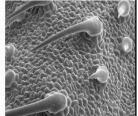

- · Cocci are small, spherical or oval in shape
- In greek 'kokkos' means berry
- E.g. Micrococcus

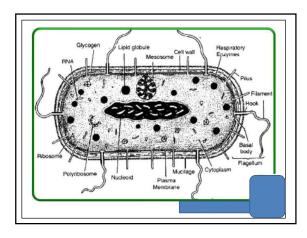

Bacilli

- They are rod in shapes.
- It is derived from greek word 'Bacillum' meaning stick.
- Some of the bacilli the length of the cell may be equal to width those are called coccobacilli
- E.g. Bracella



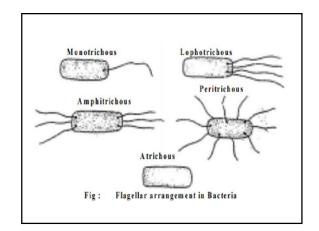
Arrangement of Bacteria Coccoid cells to exhibit growth in aggregates. Accordingly that assembly they again exist in following five manners: As pairs or diplococci. As group of four systematically arranged in a cube or sarcinae. As unorganized array like a bunch of grapes or staphylococci. As chain like a string of beads or streptococci. In that cocci divided into two planes & remain in group of four that is tetrads.


- Arrangement of groupings formed by bacilli species are limited & those split across their short axis.
- They may appear as pair those called Diplobacilli e.g. klebisella pneumoniae



Some bacilli species are found in chain like structure those called streptobacilli e.g *Bacillus subtilis*.

• Some bacilli species are found in chain like structure but have much large area of contact between the adjacent cells those are called trichomes e.g. Saprospira species


Structure of Bacterial cell Prokaryotic Cell Structure Cytoplasm Capsule Cell Wall Cytoplasmic Ribosomes Ribosomes Figure 1

Flagella

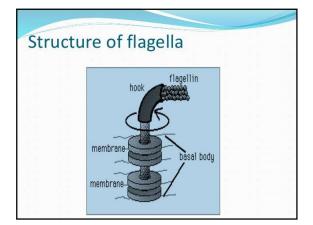
- Flagella are long, slender, thin-hair like structure.
- Flagella attached with cytoplasm.
- They play important role in bacteria for motility.
- They have 0.01 to 0.02 μm in diameter.
- They have 3 to 20 µm in length.
- Flagella found in both Gram-positive & negative bacteria.
- Few coccal forms, most bacilli & almost all of the spirilla & vibrios are motile by flagella.
- They can be seen by compound microscope with special staining technique & can be seen easily under electron microscope & dark filled microscope.

Flagella seen in bacterial species in different manners..

- Monotrichous : Single polar flagella e.g. Vibrio cholera
- Lophotrichous : two or more flagella at only one end e.g Pseudonomas fluorescens
- Amphitrichous : single flagella or more flagella at both end e.g *Alcaligenes fecales*
- Peritrichous : several flagella present all over the surface e.g. Salmonella typhi

Periplasmic flagella or endoflagella or axial fibris:

- This type flagella present in some helical bacteria i.e. (spirochetes)
- That type of bacteria showing their motility only in highly viscous media.
- In that type of bacteria flagella like structure present within the cell.
- E.g. Treponema pallidum.


Gliding motility:

In that type of bacteria showing their motility when they are contact with solid surface. E.g. Cytophaga species

Parts of flagella

Three main parts present in flagella those are...

- Filament
- Hook
- Basal body

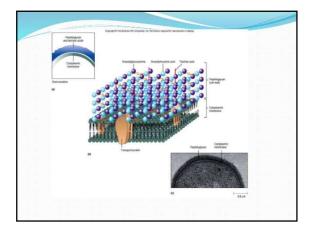
Fimbriae

- Fimbriae are similar structure like flagella but not involved in motility.
- It is shorter than flagella (3 μm).
- Fimbriae can be distributed over the entire surface of the cell.
- Fimbriae act primarily as adhesions & allow to microorganism to attach to surface.
- They responsible for haemagglutination & cell clumping in bacteria.

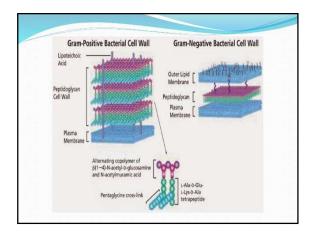
Pili

- Pilis are morphologically & chemically similar to fimbriae.
- But they are present in small in numbers compatibly fimbriae.
- Pilis joins to the bacterial cell for transfer of DNA (bacterial conjugation) from one cell to another cell.
- So pili also called as sex pili or fertility pili (F-pili).

Capsules & Slime layer


- Many bacteria secrets EPS (extracelluar polysaccharides) that are associated with the exterior of the bacterial cell.
- The EPS contains 2% carbohydrate & 98% water so, they produce gummy exterior to the cell.
- Morphologically two extreme forms exist...
- i. Capsules
- ii. Slime
- Capsules: which forms rigid, tightly & closely associated with cell
- Slimes: which are loosely associated with cell.

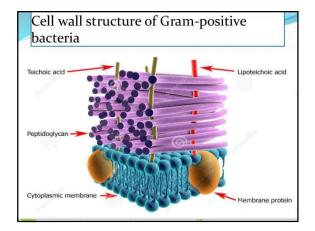
Function of capsule & slime


- They protect from desiccation.
- They provide a protection barrier against the penetration of biocides.
- They protect against engulfment by phagocytes & protozoa.
- They may promote the stability of bacterial suspension by preventing the cells from aggregation & settling.
- They may promote attachments of bacteria to surface.

Cell wall

- Cell wall gives definite shape to the bacteria.
- Cell wall situated between the capsule & cytoplasmic membrane.
- It is about 20- 30 nm in thickness.
- In the cell wall contains diaminopimelic acid (DAP), murmaic acid & teichoic acid.
- These substance joined together to formed a complex polymer structure known as peptidoglycan or murein or mucopeptide.

- Peptidoglycan is a large macromolecules containing glycan (polysaccharide) chains that are cross-linked by short peptide bridge.
- The glycan chain act as a backbone to peptidoglycan.
- Those short peptide bridge composed of alternating residues of N-acetyl muramic acid (NAM) & N-acetyl glucosamine (NAG).
- Each molecule of NAM attached a tetrapeptide.
- Tetrapeptide consisting of the amino acids L-alanine, D-alanine, D-glutamic acid & lycine or diaminopimelic acid (DAP).


- This glycan tetrapeptide repeat unit is cross -linked to adjacent glycan chain.
- This adjacent glycan chain occurs through a direct peptide linkage or a peptide interbridge.
- The type & number of cross linking amino acids vary from organism to organism.

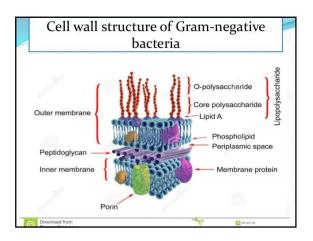
Cell wall structure of Gram-positive & Gram-negative bacteria

- On the staining technique bacteria are divided into two large groups...i. Gram-positive
 - ii. Gram- negative
- This staining technique are called as Gram staining technique.
- In that gram staining technique, the bacterial film treating with crystal violet & iodine solution & then washed with alcohol solution.
- After washing with alcohol solution the gram negative organism cells appears the colourless while, gram positive organisms are retain the dye.
- When both gram positive & negative cells are treated with different colour dye e.g. carbol fuchsin (red in colour).
- That time, gram negative cells appears red & gram positive appears purple.
- On that it reflects that both have different cell wall structure.

Gram-positive cell wall structure

- Gram positive bacterial cell wall consist of a single type of molecules
- Cell wall thick near about 20 to 80 nm.
- In that present of 60 to 80 % peptidoglycan.
- Gram positive walls frequently contains acidic polysachrides are called teichoic acids.
- Teichoic acid are either ribitol phosphate or glycerol phosphate molecules that are connected by phosphodiester bridge.
- In some gram positive bacteria glycerol-teichoic acids are bound to lipids membrane and termed as lipoteichoic acid.
- Those lipoteichoic acid create infection by killing bacteria & shows inflammation.

Gram-negative cell wall structure


- Gram negative cell wall are multilayered & complex type structure.
- Gram negative cell wall consist 10 to 20 % peptidoglycan.
- In that second layer found outside the peptidoglycan layer.
- This layer is asymmetrical & contains proteins, lipoproteins, phospholipids & lipopolysaccharide (LPS).

- This outer layer is attached to peptidoglycan & the other end is fixed in the outer membrane.
- In the inner leaf of the outer layer conatins phospholipids & it's outer layer composed with LPS (lipopoysaccharide), a polysaccharide-lipid molecule.
- In gram negative cell, the LPS is an important molecule because it determine the antigenicity & it is extremely toxic to animal cell.
- In the LPS molecules contains three regions
 - i. lipid A
 - ii. Core polysaccharide
 - iii. O-specific polysaccharide

Lipid A linked to core
KDO (ketodeoxyoctoni polysaccharide is the O-I

In the O-polysaccharide six-carbon sugars as we sugars such as abequose.

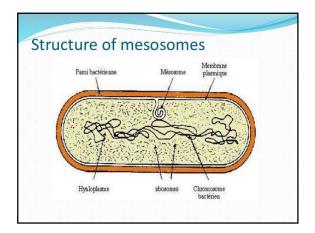
- In the lipid A components are gives toxic & pathogenic properties to the gram-negative bacteria.
- Gram negative bacterial outer membrane is relatively permeable to small molecules but not for enzymes or large molecules.
- The region between the outer surface of the cytoplasmic membrane & the inner surface of the outer membrane is called the periplasm.

Cytoplasmic Membrane

- Cytoplasmic membrane is thin near about 5 to 10 nm.
- Biochemically, the cytoplasmic membrane is fragile, phospholipid bilayer with proteins distributed randomly throughout.
- In the phospholipids bilayer most of the proteins are tenaciously held & are called integral proteins.

Functions of cytoplasmic membrane

- They including in transportation of nutrients.
- It provides mechanical strength to the bacterial cell.
- It helps in DNA replication.
- It contains the enzymes involved in the biosynthesis of membrane lipids & various macromolecules of the bacterial cell wall.


Ribosomes

- Ribosomes are most important structure in bacterial cytoplasm.
- They involved in protein synthesis.
- Ribosomes numbers varies with the rate of protein synthesis.
- If greater the number of ribosomes then the greater the protein synthesis.
- They have 200 A° in diameter.
- They are characterised by their sedimentation properties.

Mesosomes

- In most of the bacteria, particularly in Gram-positive bacteria
 the growth condition depending upon the membrane appears
 to be infolded at more than one point.
- Such infoldings are called mesosomes.
- Mesosomes presents in two types...

In central (septal) mesosomes & peripheral (lateral) mesosomes.

- Central mesosomes present deep into the cytoplasm & locate near the middle of the cell.
- These are involved in the DNA segregation & in the formation of cross walls during cell division.
- The peripheral mesosomes are not present at central location
 are not associated with nuclear material.
- Mesosomes are also called as chondroids & are visible only under electron microscope.
- Larger numbers of mesosomes have a higher respiratory activity e.g. Azotobacter.

Nucleus

- Nucleus appears oval or elongated bodies & generally present one per cell.
- The genome consists of a single molecule of double stranded DNA arrangement in a circle.
- It may open under certain conditions to form a long chain about 1000 μm in length.
- In bacterial nucleus does not contains nuclear membrane, nucleous & deoxyribonucleoprotein.
- The bacterial chromosome is haploid & replicated by simple fission instead of mitosis as in an eukaryotic cell.

Spores

- Many bacterial species produce spores inside the cell & outside the cell.
- Inside the spores are called endospores & outside the spores are called exospores. E.g Bacillus anthracis, Bacillus subtilis etc.
- Spores are extremely resistant to desiccation, staining, radiation, disinfecting chemicals & heat.
- Each bacterial spore on germination forms a single vegetative cell.
- They remain viable for long time & help bacteria to survive for long period under unfavourable condition.
- Endospores are thick-walled, highly refractile bodies that are produced one per cell.
- All the endospores contain large amount of DPA (dipicolinic acid).
- It occurs in combination with large amount of calcium, which is present in central part of the spore (core).
- That calcium & DPA complex play important role in the heat resistant of endospores.
- Endospores consists of a core or envelope or protoplast.
- In the core or protoplast consist of DNA & ribosomes, t-RNA & enzymes.
- The spore envelop consist of the inner membrane, outer membrane, cortex & spore coat.
- In some species have the outer layer called exosporium which bears ridges & fold.

Nutritional Requirements

Bacteria required the nutrition's, pH, oxygen & temperature for growth & multiplication process.

- So, for cultivation of microorganism required elements such as sodium, potassium, magnesium & iron.
- As well as in media required contains of source of carbon, nitrogen, hydrogen, oxygen & phosphorus.
- Bacteria can be classified depending upon nutritional requirements...such as carbon, energy, electron etc.

Source of energy:

Energy obtained from sunlight are called **phototrophs** bacteria e.g. *Rhodospirillum rubrum*.

Energy obtained from chemical reaction those called chemotrophs bacteria e.g. Escherichia coli or E-coli.

Source of electrons:

All bacteria required electrons for metabolism.

Lithotrops: In that type of bacteria species use the inorganic compounds as electron donor e.g. pseudomonas pseudoflava.

Organotrophs: In that type of bacteria species use the organic compounds as electron donor e.g. *Escherichia coli or E-coli*.

Photolithotrophs: some phototropic bacteria use inorganic compound (H2S) as source of electron. e.g. Chromatium okenii.

Photoorganotrophs: some phototropic bacteria use organic compound such as fatty acids & alcohols as electron donors e.g *Rhodospirillum rubrum*.

Chemolithotrophs: some chemotrophic bacteria use inorganic compound as source of electron. e.g. *Nitrosomonas europaea*.

Chemoorganotrophs: some chemotrophic bacteria use organic compound such as sugar & amino acids as electron donors e.g *Escherichia coli or E-coli.*

 Source of carbon: microorganism required carbon for synthesizing cell components.

Autotrophs: some species use CO2 as the major source of carbon these microorganisms are called autotrophs. e.g. *Chromatium okenii*.

Heterotrops: some species use organic compounds as a source of carbon such species are called heterotrophs. e.g. *Escherichia coli or E-coli*.

Nitrogen:

Nitrogen is the major component of protein & nucleic acids, so that bacteria can use nitrogen from the atmosphere or from inorganic compounds such as nitrites, nitrate.

Sulphur:

Sulphur is needed for synthesis of amino acids.

Phosphorus:

Phosphorus usually supplied in the form of phosphate is an essential component of nucleotides, nucleic acid etc.

Water:

It is the major essential nutrient as it account for about 80 to 90% of the total weight of cell.

• Mineral salts:

Bacteria require salts, particularly the anions such as phosphate & sulphate & the cations as sodium, potassium, magnesium, iron & calcium. These are present in the natural environment or may be added in cultural media.

Gram staining

- Gram staining technique discovered by Dr. Christian Gram in 1884.
- By that technique use for not just for determination of morphology but also use for the differentiae in between Gram-positive & Gram negative cell.
- Gram positive cell retain the violet stain.
- But gram negative cell decolourised & appears the red colour in some species e.g E-coli, salmonella typhi, vibrio cholerae, klebsiella pneumoniae etc.

Thank You